
7.1 Introduction and synopsis

Shaped sections carry bending, torsional and axial-compressive loads more efficiently than solid
sections do. By 'shaped' we mean that the cross-section is formed to a tube, a box-section, an
I-sectiQn or the like. By 'efficient' we mean that, for given loading conditions, the section uses as
little material, and is therefore as light, as possible. Tubes, boxes and I-sections will be referred to
as 'simple shapes'. Even greater efficiencies are possible with sandwich panels (thin load-bearing
skins bonded to a foam or honeycomb interior) and with structures (the Warren truss, for instance).

This chapter extends the concept of indices so as to include shape (Figure 7.1 ). Often it is not
necessary to do so: in the case studies of Chapter 6, shape either did not enter at all, or, when
it did, it was not a variable (that is, we compared materials with the same shape). But when two
materials are available with different section shapes and the design is one in which shape matters (a
beam in bending, for example), the more general problem arises: how to choose, from among the
vast range of materials and the section shapes in which they are available -or could, potentially,
be made -the one which maximizes the performance. Take the example of a bicycle: its forks
are loaded in bending. It could, say, be made of steel or of wood -early bikes were made of
wood. But steel is available as thin-walled tube, whereas the wood is not; wood, usually, has a solid
section. A solid wood bicycle is certainly lighter and stiffer than a solid steel one, but is it better
than one made of steel tubing? Might a magnesium I-section be better still? What about a webbed
polymer moulding? How, in short, is one to choose the best combination of material and shape?

A procedure for answering these and related questions is outlined in this chapter. It involves the
definition of shape factors: simple numbers which characterize the efficiency of shaped sections.
These allow the definition of material indices which are closely related to those of Chapter 5, but
which now include shape. When shape is constant, the indices reduce exactly to those of Chapter 5;
but when shape is a variable, the shape factor appears in the expressions for the indices.

The ideas in this chapter are a little more difficult than those of Chapter 5; their importance lies
in the connection they make between materials selection and the designs of load-bearing structures.
A feel for the method can be had by reading the following section and the final section alone; these,
plus the results listed in Tables 7.1 and 7.2, should be enough to allow the case studies of Chapter 8
(which apply the method) to be understood. The reader who wishes to grasp how the results arise

will have to read the whole thing.

7.2 Shape factors

As explained in Chapter 5, the loading on a component is generally axial, bending or torsional: ties
carry tensile loads; beams carry bending moments; shafts carry torques; columns carry compressive
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Fig. 7.1 Section shape is important for certain modes of loading. When shape is a variable a new term,
the shape factor, appears in some of the material indices: they then allow optimum selection of material
and shape.

axial loads. Figure 7.2 shows these modes of loading, applied to shapes that resist them well. The
point it makes is that the best material-and-shape combination depends on the mode of loading. In
what follows, we separate the modes, dealing with each separately.

In axial tension, the area of the cross-section is important but its shape is not: all sections with
the same area will carry the same load. Not so in bending: beams with hollow-box or I-sections
are better than solid sections of the same cross-sectional area. Torsion too, has its 'best' shapes:
circular tubes, for instance, are better than either solid sections or I-sections. To deal with this, we
define a shape factor (symbol4» which measures, for each mode of loading, the efficiency of a
shaped section. We need foUr of them, which we now define.

A material can be thought of as having properties but no shape; a component or a structure
is a material made into a shape (Figure 7.3). A shape factor is a dimensionless number which
characterizes the efficiency of the shape, regardless of its scale, in a given mode of loading. Thus
there is a shape factor, 4>8, for elastic bending of beams, and another, 4>~, for elastic twisting of
shafts (the superscript e means elastic). These are the appropriate shape factors when design is based
on stiffness; when, instead, it is based on strength (that is, on the first onset of plastic yielding or

on fracture) two more shape factors are needed: 4>£ and 4>? (the superscript f meaning failure). All
four shape factors are defined so that they are equal to 1 for a solid bar with a circular cross-section.

Elastic extension (Figure 7.2(a»

The elastic extension or shortening of a tie or strut under a given load (Figure 7.2(a» depends on
the area A of its section, but not on its shape. No shape factor is needed.
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Table 7.1 Moments of areas of sections for common shapes 
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Fig. 7.2 Common modes of loading: (a) axial tension; (b) bending; (c) torsion: and (d) axial compression, 
which can lead to buckling. 

Elastic bending and twisting (Figure 7.2(b) and (e)) 
If, in a beam of length e ,  made of a material with Young’s modulus E ,  shear is negligible, then its 
bending stiffness (a force per unit displacement) is 

(7.1) 
ClEI  ss = __ 

-e3 

where C1 is a constant which depends on the details of the loading (values are given in Appendix A, 
Section A3). Shape enters through the second moment of area, I ,  about the axis of bending 
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Fig. 7.3 Mechanical efficiency is obtained by combining material with mac'roscopic shape. The shape 
is characterized by a dimensionless shape factor, 4. The schematic is sugges.'ed by Parkhouse (I 987). 

(the x axis): 

I = /  section y2dA (7.2) 

where y is measured normal to the bending axis and dA is the differential element of area at y.  
Values of I and of the area A for common sections are listed in Table 7.1. Those for the more 
complex shapes are approximate, but completely adequate for present needs. 

The first shape factor - that for elastic bending - is defined as the ratio of the stiffness SB of the 
shaped beam to that, S;, of a solid circular section (second moment I " )  with the same cross-section 
A, and thus the mass per unit length. Using equation (7.1) we find 

( $ e - - = -  SB I 
B - sg :* 

4 A2  

Now I" for a solid circular section of area A (Table 7.1) is just 

(7.3) I" = nr = - 
4n 

from which 

4; = A2 (7.4) El 
Note that it is dimensionless - I has dimensions of (length)4 and so does A 2 .  It depends only on 
shape: big and small beams have the same value of ($5 if their section shapes are the same. This is 
shown in Figure 7.4: the three rectangular wood sections all have the same shape factor ($5 = 2); 
the three I-sections also have the same shape factor (6: = IO). In each group the scale changes but 
the shape does not - each is a magnified or shrunken version of its neighbour. Shape factors $5 
for common shapes, calculated from the expressions for A and I in Table 7.1, are listed in the first 
column of Table 7.2. Solid equiaxed sections (circles, squares, hexagons, octagons) all have values 
very close to 1 - for practical purposes they can be set equal to 1. But if the section is elongated, 
or hollow, or of I-section, or corrugated, things change: a thin-walled tube or a slender I-beam can 
have a value of ($: of 50 or more. Such a shape is efficient in that it uses less material (and thus 
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Fig. 7.4 A set of rectangular sections with 4; = 2, and a set of I-sections with 4; = 10. Members of a 
set differ in size but not in shape. 

less mass) to achieve the same bending stiffness* A beam with 4; = 50 is 50 times stiffer than a 
solid beam of the same weight. 

Shapes which resist bending well may not be so good when twisted. The stiffness of a shaft - the 
torque T divided by the angle of twist B (Figure 7.2(c)) - is given by 

KG 
s7. = e (7.5) 

where G is the shear modulus. Shape enters this time through the torsional moment of area, K .  For 
circular sections it is identical with the polar moment of area, J :  

J = J ’  r2dA (7.6) 

where dA is the differential element of area at the radial distance Y, measured from the centre of 
the section. For non-circular sections, K is less than J ;  it is defined (Young, 1989) such that the 
angle of twist 6’ is related to the torque T by 

section 

T t  
KG $ = -  (7.7) 

where i? is length OF the shaft and G the shear modulus of the material of which it is made. 
Approximate expressions for K are listed in Table 7.1. 

* This shape factor is related to the radius of gyration, R,, by @; = 47rRi/A. It is related to the ‘shape parameter’, k l ,  of 
Shanley (1960) by 6: = 47rkl. Finally, it is related to the ‘aspect ratio’ (Y and ‘sparsity ratio’ i of Parkhouse (1984, 1987) 
by @; = iw. 
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The shape factor for elastic twisting is defined, as before, by the ratio of the torsional stiffness of 
the shaped section, S T ,  to that, Sq, of a solid circular shaft of the same length l and cross-section 
A ,  which, using equation (7.5), is 

@ e - - = -  S T  K 
T -  S'; KO 

The torsional constant K" for a solid cylinder (Table 7.1) is 

giving 
m 

L I 

It, too, has the value 1 for a solid circular cylinder, and 

(7.8) 

values near 1 for any solid, equiaxed 
section; but for thin-walled shapes, particularly tubes, it can be large. As before, sets of sections 
with the same value of @+ differ in size but not shape. Values, derived from the expressions for K 
and A in Tdbk 7.1, are listed in Table 7.2. 

Failure in bending and twisting* 
Plasticity starts when the stress, somewhere, first reaches the yield strength, o, ; fracture occurs 
when this stress first exceeds the fracture strength, ofr; fatigue failure if it exceeds the endurance 
limit or. Any one of these constitutes failure. As in earlier chapters, we use the symbol 0, for the 
failure stress, meaning 'the local stress which will first cause yielding or fracture or fatigue failure.' 
One shape factor covers all three. 

In bending, the stress is largest at the point y,,, in the surface of the beam which lies furthest 
from the neutral axis; i t  is: 

MY,n 
( T = - - -  - 

I Z (7.9) 

where M is the bending moment. Thus, in problems of failure of beams, shape enters through the 
section modulus, Z = I/y,>,. If this stress exceeds o, the beam will fail, giving the failure moment 

M ,  =z0, (7.10) 

The shape factor for failure in bending, @;, is defined as the ratio of the failure moment M ,  (or 
equivalent failure load F , )  of the shaped section to that of a solid circular section with the same 
cross-sectional area A:  

@ ' - M '  z 
B - T = -  M /  Z" 

The quantity Z" for the solid cylinder (Table 7.1) is 

*The definitions of 6; and of 4; differ from those in the first edition of this book; each is the square root of the old one. 
The new detinitions allow simplifcation. 
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giving 

(7.11) 

Like the other shape factors, it is dimensionless, and therefore independent of scale; and its value 
for a beam with a solid circular section is 1. Table 7.2 gives expressions for other shapes, derived 
from the values of the section modulus Z which can be found in Table 7.1. 

In torsion, the problem is more complicated. For circular tubes or cylinders subjected to a torque 
T (as in Figure 7 . 2 ~ )  the shear stress t is a maximum at the outer surface, at the radial distance r,n 
from the axis of bending: 

(7.12) 

The quantity J / r m  in twisting has the same character as Z = l / y m  in bending. For non-circular 
sections with ends that are free to warp, the maximum surface stress is given instead by 

T rm 

J 
t = -  

T 
t = -  

Q 
(7.13) 

where Q, with units of m3, now plays the role of J / r m  or Z (details in Young, 1989). This allows 
the definition of a shape factor, 6; for failure in torsion, following the same pattern as before: 

(7.14) 

Values of Q and 4; are listed in Tables 7.1 and 7.2. Shafts with solid equiaxed sections all have 
values of 4; close to 1. 

Fully plastic bending or twisting (such that the yield strength is exceeded throughout the section) 
involve a further pair of shape factors. But, generally speaking, shapes which resist the onset of 
plasticity well are resistant to full plasticity also. New shape factors for these are not, at this stage, 
necessary. 

Axial loading and column buckling 
A column, loaded in compression, buckles elastically when the load exceeds the Euler load 

n2rr2E I,,, 
e 2  

F ,  = (7.15) 

where n is a constant which depends on the end-constraints. The resistance to buckling, then, 
depends on the smallest second moment of area, I,,,, and the appropriate shape factor (qB) is the 
same as that for elastic bending (equation (7.4)) with I replaced by Imin. 

A beam or shaft with an elastic shape factor of 50 is SO times stiffer than a solid circular section 
of the same mass per unit length; one with a failure shape factor of 20 is 20 times stronger. If you 
wish to make stiff, strong structures which are efficient (using as little material as possible) then 
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making the shape factors as large as possible is the way to do it. It would seem, then, that the 
bigger the value of 4 the better. True, but there are limits. We examine them next. 

7.3 The efficiency of standard sections 
There are practical limits for the thinness of sections, and these determine, for a given material, 
the maximum attainable efficiency. These limits may be imposed by manufacturing constraints: the 
difficulty or expense of making an efficient shape may simply be too great. More often they are 
imposed by the properties of the material itself because these determine the failure mode of the 
section. Here we explore the ultimate limits for shape efficiency. This we do in two ways. The first 
(this section) is empirical: by examining the shapes in which real materials - steel, aluminium, 
etc. - are actually made, recording the limiting efficiency of available sections. The second is by 
the analysis of the mechanical stability of shaped sections, explored in the following section. 

Standard sections for beams, shafts, and columns are generally prismatic; prismatic shapes are 
easily made by rolling, extrusion, drawing, pultrusion or sawing. Figure 7.5 shows the taxonomy 
of the kingdom of prismatic shapes. The section may be solid, closed-hollow (like a tube or box) 
or open-hollow (an I-, U- or L-section, for instance). Each class of shape can be made in a range 
of materials. Those for which standard, off-the-shelf, sections are available are listed on the figure: 
steel, aluminium, GFRP and wood. Each section has a set of attributes: they are the parameters 
used in structural or mechanical design. They include its dimensions and its section properties (the 
‘moments’ I, K and the ‘section moduli’ Z and Q) defined in the previous section. 

These are what we need to allow the limits of shape to be explored. Figures 7.6 show I ,  K ,  
Z and Q plotted against A,  on logarithmic scales for standard steel sections. Consider the first, 
Figure 7.6(a). It shows log(1) plotted against log(A). Taking logarithms of the equation for the first 
shape factor (@ = 4rcI/A2) gives, after rearrangement, 

meaning that values of 4; appear as a family of parallel lines, all with slope 2, on the figure. The 
data are bracketed by the values q5g = I (solid circular sections) and 4; = 65, the empirical upper 
limit for the shape factor characterizing stiffness in bending for simple structural steel sections. An 
analogous construction for torsional stiffness (involving 4; = 2nK/A2),  shown in Figure 7.6(b), 
gives a measure of the upper limits for this shape factor; they are listed in the first row of Table 7.3. 
Here the closed sections group into the upper band of high fT;  the open sections group into a band 
with a much lower 4; because they have poor torsional stiffness, and shape factors which are less 
than 1. 

The shape factors for strength are explored in a similar way. Taking logs of that for failure in 
bending (using & = 4&Z/A3I2) gives 

Values of 41 appear as lines of slope 3/2 on Figure 7.6(c), which shows that, for steel, real sections 
have values of this shape factor with an upper limit of about 13. The analogous construction for 
torsion (using 4; = 21/;;Q/A3/2), shown in Figure 7.6(d), gives the results at the end of the first 
row of Table 7.3. Here, again, the open sections cluster in a lower band than the closed ones because 
they are poor in torsion. 
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Fig. 7.5 A taxonomy of prismatic shapes, illustrating the attributes of a shaped section. 

Fig. 7.6 Empirical upper limits for shape factors for steel sections: (a) log(/) plotted against log(A); 
(b) log(Z) plotted against log(A); (c) log(K) plotted against log(A); (d) log(Q) plotted against log(A). 
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(b) 

(4 

Fig. 7.6 (continued) 
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(4 

Fig. 7.6 (continued) 

Table 7.3 Upper limits for the shape factors &, #;, 4; and +; 
f Material (+i)rnax (@)man (+B )ma, ( $ $ ) m a  

Structural steels 65 25 13 7 
Aluminium alloys 44 31 10 8 
GFRP and CFRP 39 26 9 7 
Polymers (e.g. nylons) 12 8 5 4 
Woods (solid sections) 5 1 3 1 
Elastomers t6 3 - - 

Similar plots for extruded aluminium, pultruded GFRP, wood, nylon and rubber give the results 
shown in the other rows of the table. It is clear that the upper-limiting shape factor for simple shapes 
depends on material. 

The upper limits for shape efficiency are important. They are central to the design of lightweight 
structures, and structures in which, for other reasons (cost, perhaps) the material content should be 
minimized. Three questions then arise. What sets the upper limit on shape efficiency of Table 7.3? 
Why does the limit depend on material? And what, in a given application where efficiency is sought, 
is the best combination of material and shape? We address these questions in turn. 

7.4 Material limits for shape factors 
The range of shape factor for a given material is limited either by manufacturing constraints, or by 
local buckling. Steel, for example, can be drawn to thin-walled tubes or formed (by rolling, folding 
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or welding) into efficient I-sections; shape factors as high as SO are common. Wood cannot so easily 
be shaped; ply-wood technology could, in principle, be used to make thin tubes or I-sections, but in 
practice, shapes with values of 4 greater than S are uncommon. That is a manufacturing constraint. 
Composites, too, can be limited by the present difficulty in making them into thin-walled shapes, 
although the technology for doing this now exists. 

When efficient shapes can be fabricated, the limits of the efficiency derive from the competition 
between failure modes. Inefficient sections fail in a simple way: they yield, they fracture, or they 
suffer large-scale buckling. In seeking efficiency, a shape is chosen which raises the load required 
for the simple failure modes, but in doing so the structure is pushed nearer the load at which other 
modes - particularly those involving local buckling - become dominant. It is a characteristic of 
shapes which approach their limiting efficiency that two or more failure modes occur at almost the 
same load. 

Why? Here is a simple-minded explanation. If failure by one mechanism occurs at a lower load 
than all others, the section shape can be adjusted to suppress it; but this pushes the load upwards 
until another mechanism becomes dominant. If the shape is described by a single variable (4 )  then 
when two mechanisms occur at the same load you have to stop - no further shape adjustment can 
improve things. Adding webs, ribs or other stiffeners, gives further variables, allowing shape to be 
optimized further, but we shall not pursue that here. 

The best way to illustrate this is with an example. We take that of a tubular column. The column 
(Figure 7.7) is progressively loaded in compression. If sufficiently long and thin, it will first fail 
by general elastic (Euler) buckling. The buckling load is increased with no change in mass if the 
diameter of the tube is increased and the wall thickness correspondingly reduced. But there is a 
limit to how far this can go because new failure modes appear: if the load rises too far, the tube 
will yield plastically, and if the tube wall is made too thin, it will fail by local buckling. Thus 
there are three competing failure modes: general buckling, local buckling (both influenced by the 
modulus of the material and the section shape) and plastic collapse (dependent on the yield strength 
of the material and - for axial loading - dependent on the area of the cross-section but not on 
its shape). The most efficient shape for a given material is the one which, for a given load, uses the 
least material. It is derived as follows. 

Fig. 7.7 A tube loaded in compression. The upper limit on shape is determined by a balance between 
failure mechanisms, of which one - local (‘chessboard’) buckling - is shown in the right-hand figure. 
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General buckling of a column of height l ,  radius r ,  wall thickness t and cross-sectional area 
A = 2nrt with ends which are free to rotate, occurs at the load 

(7.16) 

where, for thin-walled tubes, 1 = m 3 t ,  and E is the value of Young’s modulus for the material of 
which the column is made. Dividing equation (7.16) by A2,  substituting for I / A 2  from 

(7.17) 

where we use the short-hand 4 for 4;. Writing F / A  = CJ where CJ is the axial stress in the tube 
wall, we obtain an expression for the value of the stress CJI at the onset of general buckling: 

(7.18) 

Local buckling is characterized by the ‘chessboard’ pattern of Figure 7.7. This second failure mode 
occurs in a thin-walled tube when the axial stress exceeds, approximately, the value (Young, 1989, 

(mechanism 2 )  0 2  = 0.6aE- = 0 . 6 ~ ~ -  (7.19) 

(using equation (7.17) to introduce 4). This expression contains an empirical knockdown factor, a, 
which Young (1989) takes to equal 0.5 to allow for the interaction of different buckling modes. 

The final failure mode is that of general yield. It occurs when the wall-stress exceeds the value 

(mechanism 3 )  0 3  = CJ, (7.20) 

p. 262-263) 
t E 

r 4 

where CJ, is the yield strength of the material of the tube. 
We now have the stresses at which each failure mechanism first occurs. The one which is dominant 

is the one that cuts in first - that is, it has the lowest failure stress. Mechanism 1 is dominant when 
the value of CJJ is lower than either 0 2  or 0 3 ,  mechanism 2 when 02 is the least, and so on. The 
boundaries between the three fields of dominance are found by equating the equations for GI ,  0 2  

and 03 (equations (7.18), (7.19) and (7.20)) taken in pairs, giving 

F 1 .44a2 
( 1  -2 boundary) f f , P  n 

(1-3 boundary) __ 

(7.21a) 

(7.21 b) 

( 2  -3 boundary) 4 = 0.6a (t) (7.2 IC) 

Here we have arranged the variables into dimensionless groups. There are just three: the first is 
the load factor F / a , t 2 ,  the second is the yield strain c , / E  and the last is the shape factor 4. 
This allows a simple presentation of the failure-mechanism boundaries, and the associated fields 
of dominance, as shown in Figure 7.8. The axes are the load factor F / c , t 2  and the shape factor 
4. The diagram is constructed for a specific value of the yield strain a L / E  of 3 x lop3. Changing 
O ] / E  moves the boundaries a little, but leaves the general picture unchanged. 
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Fig. 7.8 A plot of the load factor F/oYY2 against shape factor 4 for o y / E  = 3 x l O - 3  for axially loaded 
tubes. The grey area shows where standard sections lie. The upper limit falls just below the boundary 
between yield and local buckling. 

To explore ~ $ ~ i e r i c y  we need one more step. According to the simple-minded argument, above, 
maximum efficiency is found when two failure modes occur at the same load. Let us be more 
precise, and see whether simple-mindedness is justified. To do this we calculate the mass of the 
column which will just not fail by any one of the mechanisms, and then seek a way of minimizing 
this with respect to 4. The mass. n z ,  of the column is 

m = A L P  (7.22) 

where A is the area of its cross-section and p is the density of the material of which it is made. 
Within the general-buckling regime 1 ,  the minimum section area A which will just support F is 

F 
A I  = - 

01 

Inserting this into equation (7.22) and replacing CJI by equation (7.18) gives for regime 1: 

4 1  
(mass in regime 1 ) (&) =( ; (5) (5) (3) ‘ I 2  (7.23a) 
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Within the local buckling regime 2, equation (7.19) for 02 dominates and we find instead 

(muss in regime 2 )  (g) = (A) (5) ($1 
and for the yield regime 3, using equation (7.20) for 03: 

(muss in regime 3 )  (&) = ($) 

(7.23b) 

(7 .23~)  

As before, the variables have been assembled into dimensionless groups; there is one new one: the 
mass is described by the group (m/ t3p ) .  For a chosen value of this quantity and of the yield strain 
* > / E ,  each equation becomes a relation between the load factor, F / o , t 2  , and the shape factor, 4, 
allowing contours of mass to be plotted on the diagram, as shown in Figure 7.8. 

We can now approach the question: what is the most efficient shape, measured by 4, for the 
cross-section of the column? Tracking across Figure 7.8 from left to right at a given value of the 
load factor, the mass at first falls and then rises again. In the lower half of the diagram the minimum 
mass lies at or near the 1-2 boundary; higher up it lies slightly to the left of the 2-3 boundary. 
So, like all good simple-minded explanations, this one is almost right - right enough to be useful. 

If the column is designed for a spec$c value of the load factor, the optimum 4 can be read 
from the diagram. But if the column is intended as a general-purpose component, the load factor 
is not known, though all reasonable values lie well within the range shown in the vertical axis of 
Figure 7.8. Then the safest choice is a value of 4 a little to the left of the 2-3 (yield-local buckling) 
boundary, since this ensures that, if the column were to fail, it would fail by yield rather than the 
more catastrophic local buckling. This boundary lies at the position given by equation (7.21~).  
Allowing a margin of reserve of 1.5 (by reducing 4 by a factor of 2/3) we find the optimal shape 
factor for the tubular column to be 

which for a = 0.5 is 
(7.24) 

This is a single example of how competing failure mechanisms determine shape efficiencies. Other 
modes of loading (bending, torsion) and other classes of shape (box-sections, I-sections) each require 
analysis, and this is a painfully tedious process, best left to others. Others have done it* and find that 
all combinations of loading and shape lead to diagrams which resemble Figure 7.8. The limiting 
efficiency depends to some extent on details of loading and class of shape, but not much. The broad 
conclusion: the ultimate limit for simple shapes (tubes, box-sections, I-sections) is set by material 
properties, and is approximated by equation (7.4). 

Much higher efficiencies are possible when precise loading conditions are known, allowing 
customized application of stiffeners and webs to suppress local buckling. This allows a further 
increase in the 4s  until failure or new, localized, buckling modes appear. These, too, can be 
suppressed by a further hierarchy of structuring; ultimately, the 4s are limited only by manufac- 
turing constraints. But for a general selection of material and shape, this is getting too sophisticated, 
and equation (7.24) above is the best approximation. 

* See, for example, the Weaver and Ashby (1998) 
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7.5 Material indices which include shape 
The performance-maximizing combination of material and section shape, for a given mode of 
loading, is found as follows. The method follows that of Chapter 5, with one extra step to bring in 
the shape. 

Axial tension of ties 
The ability of a tie to carry a load F without deflecting excessively or failing depends only on the area 
of its section, but not on its shape. The material index for stiffness at minimum weight, E / p ,  holds for 
all section shapes. This, as we have said, is not true of bending or twisting, or when columns buckle. 

Elastic bending of beams and twisting of shafts 
Consider the selection of a material for a beam of specified stiffness SB and length e ,  and it is 
to have minimum mass, m. The selection must allow for the fact that the available candidate- 
materials have section shapes which differ. The mass m of a beam of length [ and section area A is 
given by equation (7.22). Its bending stiffness is given by equation (7.1). Replacing I by 4; using 
equation (7.4) gives 

Using this to eliminate A in equation (7.25) gives the mass of the beam: 

2 '12  4nS ' I 2  
m = [ C s ]  e ) [ & ]  

(7.25) 

(7.26) 

For beams with the same shape, for which is constant, the best choice for the lightest beam 
is the material with the greatest value of E'12/p - the result derived in Chapter 5 (note that this 
applies to material selection for all self-similar shapes, not just solid ones). But if we wish to select 
a material-shape combination for a light stiff beam, the best choice is that with the greatest value 
of the index - 

(7.27) 

I I 

Exactly the same result holds for the general elastic buckling of an axially loaded column. 
The procedure for elastic twisting of shafts is similar. A shaft of section A and length l is 

subjected to a torque T .  It twists through an angle 8. It is required that the torsional stiffness, 
T/O,  meet a specified target S T ,  at minimum mass. The mass of the shaft is given, as before, by 
equation (7.24). Its torsional stiffness is 

K G  
e S T  = ~ 

where G is the shear modulus, and K was defined earlier. Replacing K by (beT using equation (7.8) 
gives 

ST = G 2  (7.28) 
2n l  



Selection of material and shape 181 

Using this to eliminate A in equation (7.24) gives 

The best material-and-shape combination is that with the greatest value of [q5+G]'12/p. The shear 
modulus. G, is closely related to Young's modulus E .  For the practical purposes we approximate 
G by 3 / 8 E :  then the index becomes 

(7.29) 

For shafts of the same shape, this reduces to E ' ! ' / p  again. When shafts differ in both material and 
shape, the material index (7.29) is the one to use. 

Failure of beams and shafts 
A beam, loaded in bending, must support a specified load F without failing. The mass of the beam 
is to be minimized. When shape is not a consideration, the best choice (Chapter 5 )  is that of the 
material with the greatest value of n i ' . ' /p  where nI is the failure strength of the material. When 
section-shape is a variable, the best choice is found as follows. 

7 ' 7  

Failure occurs if the load exceeds the failure moment 

t Replacing Z by the appropriate shape-factor @B via equation (7.1 1 ) gives 

Substituting this into equation (7.22) for the mass of the beam gives 

The beat material-and-shape combination is that with the greatest value of the index 

(7.30) 

(7.3 1 ) 

(7.32) 

At constant shape the index reduces to the familiar a i ! ' / p  of Chapter 5;  but when shape as well as 
material can be chosen. the full index must be used. 

The twisting of shafts is treated in the same way. A shaft must carry a torque T without failing. 
This requires that T not exceed the failure torque T t  , where, from equation (7.13), 
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Replacing Q by 4; with equation (7.14) gives 

(7.33) 

where s j ,  the shear-failure strength has been replaced by af /2 ,  the tensile failure strength. Using 
this to eliminate the area A in equation (7.34) for the mass of the shaft gives 

(7.34) 

Performance is maximized by the selection which has the greatest value of 

(7.35) 

Constrained shapes 
The geometry of a design sometimes imposes constraints on shape. Panels, for example, usually 
have a fixed width but a thickness which is ‘free’, meaning that it can be chosen to give a desired 
bending stiffness; the shape of the section, too, is free: it could, for example, be a honeycomb. 
Beams, too, may be constrained in either height or width. When there is a dimensional constraint, 
the definition of the shape factor changes. Material indices for constrained shapes are discussed in 
the Appendix to this chapter. 

7.6 The microscopic or micro-structural shape factor 

Microscopic shape 
The sections listed in Tables 7.1 and 7.2 achieve efficiency through their macroscopic shape. 
Efficiency can be achieved in another way: through shape on a small scale; microscopic or ‘micro- 
structural’ shape. Wood is an example. The solid component of wood (a composite of cellulose, 
lignin and other polymers) is shaped into little prismatic cells, dispersing the solid further from the 
axis of bending or twisting of the branch or trunk of the tree. This gives wood a greater bending and 
torsional stiffness than the solid of which it is made. The added efficiency (Figure 7.9) is character- 
ized by a set of microscopic shape factors, $, with definitions and characteristics exactly like those 
of 4. The characteristic of microscopic shape is that the structure repeats itself it is extensive. The 
micro-structured solid can be thought of as a ‘material’ in its own right: it has a modulus, a density, 
a strength, and so forth. Shapes can be cut from it which - provided they are large compared with 
the size of the cells - inherit its properties. It is possible, for instance, to fabricate an I-section 
out of wood, and such a section has macroscopic shape (as defined earlier) as well as microscopic 
shape (Figure 7.10). It is shown in a moment that the total shape factor for a wooden I-beam is the 
product of the shape factor for the wood structure and that for the I-beam; and this can be large. 

Many natural materials have microscopic shape. Wood is just one example. Bone, stalk and 
cuttle all have structures which give high stiffness at low weight. It is harder to think of man- 
made examples, although it would appear possible to make them. Figure 7.1 1 shows four extensive 
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Fig. 7.9 Mechanical efficiency can be obtained by combining material with microscopic, or internal, 
shape, which repeats itself to give an extensive structure. The shape is characterized by microscopic 
shape factors, q. 

Fig. 7.10 Micro-structural shape can be combined with macroscopic shape to give efficient structures. 
The schematic is suggested by Parkhouse (1984). The overall shape factor is the product of the 
microscopic and macroscopic shape factors. 

structures with microscopic shape, all of which are found in nature. The first is a wood-like structure 
of hexagonal-prismatic cells; it has translational symmetry and is uniform, with isotropic properties 
in the plane of the section when the cells are regular hexagons. The second is an array of fibres 
separated by a foamed matrix typical of palm wood; it too is uniform in-plane and has translational 
symmetry. The third is an axisymmetric structure of concentric cylindrical shells separated by a 
foamed matrix, like the stem of some plants. And the fourth is a layered structure, a sort of multiple 
sandwich-panel, like the shell of the cuttle fish; it has orthotropic symmetry. 

Microscopic shape factors 
Consider the gain in bending stiffness when a solid cylindrical beam like that shown as a black 
circle in Figure 7.1 1 is expanded, at constant mass, to a circular beam with any one of the structures 
which surround it in the figure. The stiffness S ,  of the original solid beam is 

(7.36) c 1 E,[, s, = ~ 

c 3  
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Micro-Structured Materials 

Fig. 7.1 1 Four extensive micro-structured materials which are mechanically efficient: (a) prismatic cells; 
(b) fibres embedded in a foamed matrix; (c) concentric cylindrical shells with foam between; and 
(d) parallel plates separated by foamed spacers. 

where the subscript s means a property of the solid beam. When the beam is expanded at constant 
mass its density falls from p\ to p and its radius increases from r ,  to 

I / 2  

r = (;) r ,  (7.37) 

with the result that its second moment of area increases from I ,  to 

I = TrJ = if ("l)l.; = (!I) 1, (7.38) 

If the cells, fibres, rings or plates in Figure 7.1 1 are extensive parallel to the axis of the beam, the 
modulus falls from that of the solid, E, ,  to 

2 

4 4 p 

E =  ( : ) E $  (7.39) 

The stiffness of' the expanded beam is thus 

s=--- CIEI - - c y  (;) (7.40) 
e 3  
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The microscopic shape factor, @ is defined in the same way as the macroscopic one, 4: it is the ratio 
of the stiffness of the structured beam to that of the solid one. Taking the ratio of equations (7.40) 
and (7.36) gives 

(7.41) 

In words: the microscopic shape factor for prismatic structures is simply the reciprocal of the relative 
density. Note that, in the limit of a solid (when p* = p,) takes the value 1 ,  as it obviously should. 
A similar analysis for failure in bending gives the shape factor 

I I 

(7.42) 

Torsion, as always, is more difficult. When the structure of Figure 7.1 l(c), which has circular 
symmetry, is twisted, its rings act like concentric tubes and for these 

(7.43) 

The others have lower torsion stiffness and strength (and thus lower shape factors) for the same 
reason that I-sections, good in bending, perform poorly in torsion. 

Structuring, then, converts a solid with modulus E ,  and strength to a new solid with properties 
E and af. If this new solid is formed to an efficient macroscopic shape (a tube, say, or an I-section) 
its bending stiffness, to take an example, increases by a further factor of 4;. Then the stiffness of 
the beam, expressed in terms of that of the solid of which it is made, is 

that is, the shape factors multiply. The same is true for strength. 
This is an example of structural hierarchy and the benefits it brings. It is possible to extend it 

further: the individual cell walls or layers could, for instance, be structured, giving a third multiplier 
to the overall shape factor, and these units, too could be structured (Parkhouse, 1984). Nature does 
this to good effect, but for man-made structures there are difficulties. There is the obvious difficulty 
of manufacture, imposing economic limits on the levels of structuring. And there is the less obvious 
one of reliability. If the structure is optimized, then a failure of a member at one level of the 
structure could trigger failure of the structure as a whole. The more complex the structure, the 
harder it becomes to ensure the integrity at all levels. 

As pointed out earlier, a micro-structured material can be thought of as a new material. It has 
a density, a strength, a thermal conductivity, and so on; difficulties arise only if the sample size 
is comparable to the cell size, when ‘properties’ become size dependent. This means that micro- 
structured materials can be plotted on the Material Selection Charts - indeed, wood appears on 
them already - and that all the selection criteria used for solid materials developed in Chapter 5 
apply, unchanged, to the micro-structured materials. 
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7.7 Co-selecting material and shape 
Optimizing the choice of material and shape can be done in several ways. Two are illustrated below. 

Co-selection by calculation 
Consider as an example the selection of a material for a stiff shaped beam of minimum mass. Four 
materials are available, listed in Table 7.4 with their properties and the shapes, characterized by 45, 
in which they are available (here, the maximum ones). We want the combination with the largest 
value of the index M I  of equation (7.27) which, repeated, is 

P 

The second last column shows the simple ‘fixed shape’ index E’I2 /p :  wood has the greatest 
value - it is more than twice as stiff as steel for the same weight. But when each material is shaped 
efficiently (last column) wood has the lowest value of M I  - even steel is better; the aluminium 
alloy wins, marginally better than GFRP. 

Graphical co-selection using material property charts 
Shaped materials can be displayed and selected with the Material Selection Charts. The reasoning, 
for the case of elastic bending, goes like this. The material index for elastic bending (equation (7.27)) 
can be rewritten as 

(7.45) 

The equation says: a material with modulus E and density p, when structured, behaves like a 
material with modulus 

E* = B 

and density 
P* = PI@; 

The E-p chart is shown schematically in Figure 7.12. The structured material properties E* and 
p* can be plotted onto it. Introducing shape (4; = 10, for example) moves the material M to the 
lower left along a line of slope 1 ,  from the position E ,  p to the position E/10, p/10, as shown in 
the figure. The selection criteria are plotted onto the figure as before: a constant value of the index 
of E 1 / 2 / p ,  for instance, plots as a straight line of slope 2; it is shown, for one value of E 1 I 2 / p ,  as 

Table 7.4 The selection of material and shape for a light, stiff, beam 

Material P E @;ax ~ E‘/2 (@maxES’* 

P P Mg/rn3 GPa 

1020 Steel 7.85 205 65 1.8 14.7 
6061-T4 A1 2.7 70 44 3.1 20.5 
GFRP (isotropic) 1.75 28 39 2.9 19.0 
Wood (oak) 0.9 13.5 5 4.1 9.1 

*&,ax means the maximum permitted value of @ from Table 7.3. 



Selection of material and shape 187 

Fig. 7.12 Schematic of Materials Selection Chart 1: Young's modulus plotted against density. The best 
material-and-shape for a light, stiff beam is that with the greatest value of E 1 / 2 / p .  The structured material 
behaves in bending like a new material with modulus E* = €/& and density p* = p/& (where & means 
4;) and can be plotted onto the charts. All the material-selection criteria still apply. A similar procedure 
is used for torsion. 

a broken line. The introduction of shape has moved the material from a position below this line to 
one above; its performance has improved. Elastic twisting of shafts is treated in the same way. 

Materials selection based on strength (rather than stiffness) at a minimum weight uses the chart of 
strength af against density p, shown schematically in Figure 7.13. Shape is introduced in a similar 
way. The material index for failure in bending (equation (7.32)), can be rewritten as follows 

f 2 213 
(7.32) 

The material with strength af and density p, when shaped, behaves in bending like a material of 
strength 

( 4 b j  )2'3 - ( a f I ( 4 B  ) 1 
P P / ( d  l2 

a; = c j  l (4i  l2 

P* = P/(4i)2 

M3 = - 

and density 

The rest will be obvious. Introducing shape (4,f = m, say) moves a material M along a line 
of slope 1, taking it, in the schematic, from a position C T ~ ,  p below the material index line (the 



188 Materials Selection in Mechanical Design 

Fig. 7.13 Schematic of Materials Selection Chart 2: strength of plotted against density p. The best 
material for a light, strong beam is that with the greatest value of ~ : / ~ / p .  The structured material behaves 
in bending like a new material with strength 0; = of/@, and density p/$* (where 4 means &, and can 
be plotted onto the chart. All the material-selection criteria still apply. A similar procedure is used for 
torsional strength. 

broken line) to the position o f / I O ,  p/IO which lies above it. The performance has again improved. 
Torsional failure is analysed by using #{ in place of # B .  f 

Examples of the method are given in the case studies of the next chapter. 

7.8 Summary and conclusions 
The designer has two groups of variables with which to optimize the performance of a load-bearing 
component: the material properties and the shape of the section. They are not independent. The 
best choice of material, in a given application, depends on the shapes in which it is available, or 
to which it could potentially be formed. A procedure is given for simultaneously optimizing the 
choice of both material and shape. 

The contribution of shape is isolated by defining four shape factors. The first, @$, is for the elastic 
bending and buckling of beams; the second, q$, is for the elastic twisting of shafts; the third, @B f 
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Table 7.5 Definitions of shape factors 

Design constraint* Bending Torsion 

Stiffness 

Strength 

* A  = section area; I ,  K ,  Z and Q are defined in the text and 
tabulated in Table 7.1. 

is for the plastic failure of beams loading in bending; and the last, @{, is for the plastic failure 
of twisted shafts (Table 7.5). The shape factors are dimensionless numbers which characterize the 
efficiency of use of the material in each mode of loading. They are defined such that all four have 
the value 1 for solid circular sections. With this definition, all equiaxed solid sections have shape 
factors of about 1, but efficient shapes which disperse the material far from the axis of bending or 
twisting (I-beams, hollow tubes, sandwich structures, etc.) have large values of the shape factors. 
They are tabulated for common shapes in Table 7.2. 

The best material-shape combination for a light beam with a prescribed bending stiffness is that 
which maximizes the material index 

)1’2 M i  = 
P 

A similar combination, M 2 ,  involving @-, gives the lightest stiff shaft. The material-shape combi- 
nation for a light beam with a prescribed strength is that which maximizes the material index 

A similar combination, M 4 ,  involving @{ gives the lightest strong shaft. Here, the criterion of 
‘performance’ was that of meeting a design specification at minimum weight. Other such mater- 
ial- shape combinations maximize other performance criteria: minimizing cost rather than weight, 
for example, or maximizing energy storage. Examples are developed in Chapter 8. 

The idea of micro-structural shape factors ($) is introduced to characterize the efficiency, in 
bending and torsion, of cellular, layered and other small-scale structures, common in nature. They 
are defined in the same way as the 4s. The difference is that microscopic shape is repeated; structures 
with microscopic shape are extensive and can themselves be cut to give macroscopic shape as well. 
Such structures can be thought of either as a solid with properties E,,  af,5 and p 5 ,  with a microscopic 
shape factor of e; or as a new material, with a new set of properties, E , / $ ,  p T / $ ,  etc., with a 
shape-factor of 1. Wood is an example: it can be seen as solid cellulose and lignin shaped to the 
cells of wood, or as wood itself, with a lower density, modulus and strength than cellulose, but 
with greater valuer of indices E’12/lp and C?’~/P which characterize structural efficiency. When 
micro-structured materials (3) are given macroscopic shape (4 )  the total shape factor is then the 
product I$$, and this can be large. 

The procedure for selecting material- shape combinations is best illustrated by examples. These 
can be found in the next chapter. 
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Appendix: geometric constraints and associated shape 
factors 
Geometric constraints 
Whenever a free variable is adjusted to find an optimum, it is good practice to check that its value, 
when the optimum is found, is acceptable. In choosing a material and shape to meet constraints on 
stiffness or on strength, the scale of the section has been treated as free, choosing a value that meets 
the constraint. One can imagine circumstances in which this might not be acceptable - when, for 
instance, the outer diameter d of a tube could be chosen freely provided it was less than a critical 
value d ;  or when, to take another example, the width w of a beam was genuinely free but the height 
h free only so long as it was less than h*. Dimensional constraints of this sort can change the index 
and the way it is used. The methods developed so far can be extended to include them. 

For solid sections (cylinders, square sections) a dimensional constraint leads to a simple minimum 
limit for modulus or strength. Take bending stiffness as an example. The stiffness of a beam is: 

(A7.1) 

(using I = nr4j4) .  If there is an upper limit on r then for the stiffness constraint to be met E must 
exceed the value 

(A7.2) 

Materials with lower moduli than this are excluded. 
Limits for E for shaped sections are derived in a similar way. We take the tube as an example. 

Its bending stiffness is 
Clr4 E nr3t = ~- 

ClEI C1E s=------- - 
-e3 -e3 e3 4 

(A7.3) 
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(using 4 = r / f ) .  An upper limit on the radius leads to the limit 

(A7.4) 
se34 E = -  
C m 3  

Only materials with moduli greater than this are candidates. 

Constrained shapes 
Constrained shapes appear when one dimension of the section is limited by the design. The idea is 
shown in Figure 7.14. When a ‘free’ shape changes scale, all the dimensions of its section scale by 
the same factor, as in Figure 7.1. When a constrained shape changes scale, all dimensions in one 
direction remain fixed, all those in the other scale by the same factor (Figure 7.14(a) and (b)). The 
constraint changes the material index. 

When the width is constrained, we can no longer define 4 by using a solid cylindrical section 
as the standard to which the other shapes are normalized. Instead - and in the same spirit as 

Fig. 7.14 A constrained section-shape is one in which the design fixes one dimension, but for which the 
other is free; all lengths in this direction change in proportion when the section changes size. It contrasts 
with a free shape (Figure 7.1) in which all dimensions change in proportion when the section changes in 
size. At (a) the height h is constrained; at (b) the width b is constrained. 
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before - we use the simplest solid shape that allows one dimension to be held fixed while leaving 
the other free: a flat plate of thickness t ,  width b and length e .  Its area A, its second moment I ,  and 
its section modulus Z are given in terms of its height t and its width b by (Table 7.1) 

A" = tb 

bt3 I" = - 
12 
bt2 zo - 
6 

(A7.5) 

Sections with constrained height, loaded in bending 
The shape factor for elastic bending is defined, as before, as the ratio of the stiffness of the plate 
before (S;) and after ( S B )  'structuring'. 4; now become 

(using I = bt3/12). The stiffness of the plate is 

(A7.6) 

(A7.7) 

and its mass is m = bttp.  Eliminating t gives 

The lightest plate is that made from the material with the largest value of the index 

(A7.8) 

An example will illustrate its use. Consider a plate, initially solid and of thickness t and width b 
which is foamed to a height h (width and length held constant). The density falls from p to 

and the modulus falls from E to 

(the scaling law for the modulus of foams). The stiffness falls from 

CkE'I' C1Eobt3 s o =  ___ - - 
e 3  12i3 

to 
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As before, we find that foaming imparts a shape factor equal to the reciprocal of the relative density. 
Following the same procedure for strength gives 

with associated index (for minimum mass) of 

P 


